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CONTENTS

Abstract

Covering Spaces constitute an important contribution in understanding the homotopy
theory and Riemanninan geometry among other fields. The far reach of this theory is
due to the visual flavour imbibed in it and its ability to commute to other areas of study.
The close connection between the Galois theory of Field extensions and the Fundamental
groups helps in gaining a lot of insight about more complicated fields and spaces, be it the
cyclotomic fields or some weird topological spaces. An important practical application of
covering spaces occurs in charts on SO(3), the rotation group. This group occurs widely in
engineering, due to 3-dimensional rotations being heavily used in navigation and nautical
engineering. In what follows, we shall introduce the notion of covering spaces and some of
its interesting consequences.
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2 THE THEORY OF COVERING SPACES

1 Motivation

The Galois theory of Fields is vastly studied for its topological analog that has a very nice visual
and computational advantage. The ideas stems as follows: Let L/K be any finite separable field
extension, then we can see the base field K as a single point upon which the extension field is
set out as a finite set of (discrete) points that maps directly to this base point. We shall take
care that the continuity is preserved in such a process and hence the Galois theory equips this
situation with the notion of Absolute Galois Group that leaves the base point fixed.

But more information could be gained if we consider the base field as a space rather than a
single point and hence the notion of space over space can be introduced homologously. The role
of field extensions would then be played by certain continuous surjections, called covers, whose
fibres are finite (or, even more generally, arbitrary discrete) spaces. Under some restrictions
on the base space one can also develop a topological analogue of the Galois theory of fields
with the part of the absolute Galois group being taken by the fundamental group of the base
space. After one has equipped this situation very pragmatically and carefully, a lot of suprising
analogues between topological spaces and Fields can be unravelled, thus contributing to the
richness of both fields.

2 The Theory of Covering Spaces

Definition 2.1 (Space over space). Let X be any topological space. A space over a space X
is any topological space Y (allowing the case Y = X) along with a continuous map p : Y → X.
With morphism as explained below, this forms a category TOPB which is called the space over
B.

Suppose if Y1, Y2 are two such spaces over X with p1 : Y1 → X and p2 : Y2 → X, then a
morphism ψ : Y1 → Y2 is such that the following diagram commutes.

Y1 Y2

X

ψ

p1 p2

Definition 2.2 (Fibre Bundle). Let B be any topological space. A fibre bundle E over B is a
topological space E with fibres F equipped with a continuous map p : E → B. Such a space
should satisfy the local trivality condition as follows,

Local Trivialisation: Let p : E → B be continuous map and let U ⊂ B be open and one
can assume the map p is surjective to avoid empty fibres. A trivialisation of U w.r.t. p is a
homeomorphism φ : p−1U → U×F such that pr1 ◦φ = p (i.e.) the following triangle commutes.
This condition determines F upto homeomorphism, since φ induces a homeomorphism p−1U
with {u} × F .

p−1U ⊂ E Ui × F

b ∈ U

∼= φ

p pr1
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2 THE THEORY OF COVERING SPACES

Local Triviality of the maps: We say the map p is locally trivial if for each b ∈ B, there
exists an open neighbourhood U ⊂ B such that U is a local trivialisation. We say the map p is
trivial if the set B itself has a local trivialisaton.

As a simple consequence, if p is trivial, then it is locally trivial, but not the converse. We
shall also see an interesting example obstructing the converse.

The triple (E,F, p) is sometimes called the fibre bundle over B.

Definition 2.3 (Cover). A Cover or more generally a Covering Space is a special fibre bundle
with fibres in Set. In other words, a covering has a discrete fibres. Here, we use both cover and
covering space interchangeably.

Remark 2.4. The collection of all fibre bundles (resp. covers) over B form a category called the
FibB (resp. COVB) whose objects are fibre bundles (resp. covering spaces). The morphism ψ in
2.1 is also called the bundle map or covering map in the category of FibB or COVB respectively.
However, it is important to note that COVB form a full subcategory of TOPB.

Example 2.5.

1. Any space can be realised as a covering over itself. We can always take E = B in the
definition above. More generally, for any non-empty discrete topological space I, one can
take E = B × I and verify that this is a trivial bundle over B with fibres I. These are
also called Trivial Covers.

2. The One-dimensional bundles over a space are sometimes called a Line bundle. The
Möbius strip is a non-trivial line bundle over S1 with fibres I = [0, 1].

Figure 1: Möbius band as a line bundle over S1 [4]

It has a circle that runs lengthwise along the center of the strip as a base B and a line
segment for the fiber F , so the Möbius strip is a bundle of the line segment over the circle
S1. A neighborhood U of π(x) ∈ B (where x ∈ E) is an arc here. A homeomorphism
exists that maps the preimage of U (the trivializing neighborhood) to a slice of a cylinder
which is curved, but not twisted! This pair locally trivialises the strip. The corresponding
trivial bundle B × F would be a cylinder, but the Möbius strip has an overall ”twist”.
This twist is visible only globally; locally the Möbius strip and the cylinder are identical
and indistinguishable.

3. The space R is the cover of S1 defined by the exponential map p : R→ S1, t 7→ e2πit. The
fibres of this bundle can be found to be Z. One can easily check that it is is not a trivial
bundle as R � S1 × Z.

4. The tangent bundle TS1 over S1 is trivial with fibre as R. The map F : S1 × R→ TS1 ⊂
R2 × R2 given by ((x, y), t) 7→ ((x, y), t(−y, x)) However, by the Hairy-Ball theorem we
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2 THE THEORY OF COVERING SPACES

have that TS2 is non-trivial bundle over S2. In fact, the bundle TSn over Sn is trivial
⇐⇒ n = 1, 3, 7.

Figure 2: Tangent bundle over S1

The vertical lines represent the tangent spaces attached disjointly to S1 represented by
the black circle.

5. In fact, if M is any smooth n-manifold, then every tangent bundle TM →M is a locally
trivial bundle with fibres Rn. A manifold whose tangent bundle is isomorphic to a trivial
bundle is called Parallelizable.

Proposition 2.6 (Every cover is locally a trivial cover). A space E over B is a cover if and
only if each point of B has an open neighbourhood V such that the restriction of the projection
p : E → B to p−1V is isomorphic (as a space over V ) to a trivial cover.

Proof. =⇒ : This fact trivially follows from the example 1 as provided above.
⇐= : If V is any open neighbourhood in the base space B with a decomposition p−1V ∼=

⊔
i∈I Ui

for some index set I, mapping ui ∈ Ui to the pair (p(ui), i) defines a homeomorphism of⊔
i∈I Ui onto V × I, where I is endowed with the discrete topology. By construction this is an

isomorphism of covers of V .

Corollary 2.7. If B is connected, the fibres of p are all homeomorphic to the same discrete
space I.

Remark 2.8 (Properties of Covering Spaces).

1. The product of coverings is again a covering. If p1 : E1 → B1 and p2 : E2 → B2 are
two covering, then the map p1 × p2 : E1 × E2 → B1 ×B2 is again a covering of B1 ×B2.
For example: R× R is the covering of S1 × S1 = T2 with fibres Z× Z.

2. Covering are preserved under pullbacks. Consider the following pullback square. If
p′ is a covering, then so is p.

E E′

B B′

p
y

p′
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3. Let B be any locally connected topological space. If the p and p′ are covering in the
following commutative square,

E E′

B

f

p p′

then f is a covering.

Definition 2.9 (Even action). Let G be a group acting continuously from the left on a topo-
logical space X . The action of G is even if each point x ∈ X has some open neighbourhood U
such that the open sets gU (also called orbits) are pairwise disjoint for all g ∈ G. We represent
such an action by G\X.

Lemma 2.10. If G is a group acting evenly on a connected space X, then the projection
prG : X → G\X turns X into a cover of G\X.

Proof. Firstly, note that this projection mapping prX : X → G\X is surjective. Now since the
action is even, every point x ∈ X has some open neighbourhood U such that gU is pairwise
disjoint in G\X. Now taking back these to the space X by pr−1X , these sets are mapped to their
disjoint representatives and the claim follows naturally.

Remark 2.11. The covering defined above is also called the Projection covering. The group
action is also sometimes called the Properly Discontinuous action. The even action of group is
equivalent to claiming that the group acts both properly and freely on the space X.

Example 2.12 (Even actions form nice spaces).

1. The translation action of Z on R defined by Z × R → R such that (x, n) 7→ x + n, for
n ∈ Z. Alternatively, these can be viewed as automorphisms of the space R given by the
translation of points. Now by the lemma above, R is immediately seen to be the cover of
the space R/Z ∼= S1 as it is an even action.

2. More generally one can take this to arbitrary dimensions and form the circle group Sn ∼=
Rn/Zn. The map is defined as follows: Take any basis {x1, . . . xn} of the vector space Rn
and make Zn act on Rn so that the i-th direct factor of Zn acts by translation by xi . This
action is clearly even and turns Rn into a cover. The resulting quotient space is called the
linear torus. When n = 2 we get the usual torus. The subgroup Λ of Rn generated by the
xi is usually called a lattice. Thus linear tori are quotients of Rn by lattices.

3. For an integer n > 1 denote by µn the group of n-th roots of unity. We can multiply by
elements of µn and thus it defines an even action on C∗ := C\{0}. The multiplicative
group C∗ covers the space C∗/µn defined by the map pnC∗ → C∗/µn. In fact, the map
z 7→ zn defines natural homeomorphism of C∗/µn onto C∗ and via this homeomorphism
pn becomes identified with the cover C∗ → C∗ given by z 7→ zn.

3 Some Interesting Consequences

1. The calculation of fundamental group of certain spaces can be simplifed. In particular, if
the space X is simply connected with an even action by group G\X, then π1(G\X) ∼= G.
The result uses the fact that the map X →→ G\X is a covering.
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For example, by setting X = S2 and G = Z/2, and let G act on X by taking x 7→ (−x).
This action identifies the anti-podal points on the unit sphere and further this action can
be easily found to be even. The space obtained by this corresponding action is the Real
projective Space RP 2 and hence by the above fact we have that π1(G\X) = π1(RP

2) =
Z/2. More generally, for all n ≥ 2, π1(RP

n) = Z2 holds true.

2. Triviality of covering. Let p : E → B be any covering with B connected. Then p is
trivial ⇐⇒ for every e ∈ E there exists a section s of p such that s(p(e)) = e.

3. A Topological Space X( 6= φ) simply connected ⇐⇒ every covering E → X is trivial.
Using this result, we shall also see that the circle S1 is not simply connected as it has a
non-trivial covering by R. Infact, R is the universal cover of S1.

4. The Monodromy action of the covering spaces. Let B be any topological space with
p : E → B. If p is a covering, then the π1(B, b) acts on the fibre Eb. This action is called
Monodromy. It measures how does a space behave when surrounded by a singularity. As
a result, one can identify the category of covering spaces COVb with the functor category
Fun(Π1(B), Set), where Π1 is the fundamental groupoid.

5. If p : E → B is a locally trivial bundle, then there exists a Long exact sequence of pairs,

. . . πn+1(B, b)→ πn(Eb, e)→ πn(E, e)→ πn(B, b) . . .

6. Every covering gives rise to a special fibration called the Serre Fibration. A prototypical
example is the fibration of spheres known as the Hopf fibration of S3 over S2 with fibres
S1. It is locally a produt space but not a trivial bundle as globally S3 is not a product
of S2 with S1. Thus, by combining with above fact we have the famous consequence from
Homotopy theory that πn(S3) ∼= πn(S2), for n ≥ 3.

Figure 3: Hopf Fibration S1 → S3 → S2

The other Hopf fibrations include:

� S1 over S1 with fibres S0

� S7 over S4 with fibres S3

� S15 over S8 with fibres S7

and that is all!
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